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Abstract
Software-Defined Networking (SDN) has been proposed as a promising way for its centralized network control and
management. However, the latest SDN research focuses on smaller network environments such as data centers and
enterprises, which easily lead to single point of failure and unbalanced network load in large-scale network environments.
One effective way to solve this problem is to establish a standardized mechanism between network entities such as data
centers, enterprises and Internet service providers (ISPs). In this paper, we propose WECAN, an efficient West-East Control
Associated Network for enabling communication between different SDN entities. WECAN has three complementary
modules: Network Information Collection (NIC) module, Cross-domain Management (CDM) module and Controller
Selection Management(CSM) module. NIC collects network information from a different set of controllers and generates a
domain-wide network view. CDM collects domain information from other domains to generate a global network view. Base
on the domain-wide network view and global network view, CSM selects the most efficient controller for each network
flow in the network. To test WECAN, we develop a prototype system. Our experimental results show that WECAN can
effectively control network entities to communicate, andWECAN has greatly improved network latency, network throughput
and network reliability compared to a single controller-controlled network. Moreover, WECAN is very easy to use.

Keywords WECAN · Software-defined networking · OpenFlow

1 Introduction

Traditional network has been widely successful and
becomes a basic infrastructure which national economies
depend on. However, it has long been known that
the architecture of traditional network has significant
deficiencies, such as the coupling between control layer
and data (or forwarding) layer, low-level configuration
of individual components, complicated middle-boxes, and
unfriendly Graphical User Interface (GUI). The above
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problem is not a cold fever, but deep-rooted in the traditional
network of chronic illness, if not resolved will develop into
a network of cancer. Many new network design principles
and methods have been proposed to solve this problem.

Software-defined networking (SDN) is one of the most
watched solutions. SDN not only simplifies network man-
agement, but also enables the network to meet specific
end-to-end requirements. Unlike traditional network imple-
mentations, SDN recommends separating the control layer
from the forwarding layer and centralizing the decision
making for higher-level routing decisions to the control
layer.

So centralized control is key to SDN.
However, operators only have limit degrees of control

on SDN. There are a variety of SDN controllers, including
Floodlight [1], Ryu [2], OpenDaylight [3], Beacon [4],
ONOS [5], Pox [6], Trema [7], Nox [8] and so on.
Each SDN controller provides their own API to manage
the network and forwarding path computation. One key
limitation of those controllers is that each SDN controller
has its own communication mechanism that makes SDN
networks very difficult to exchange information between
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different domains. The domain can be a ISP network or an
enterprise network, and it can also be a data center.

The goal of this paper is simple: without compromising
or even improving the performance of the network, different
networks and network controllers can communicate with
each other. To provide the necessary context, we start by
asking the following questions.

1. Does different SDN controllers need to exchange
network information (e.g. topology and routing table)
with each other?

2. How and What does different controllers communicate
with each other?

3. Which controller should be responsible for processing
the incoming network flow?

The rest of the paper is organized as follows. We describe
the background and motivation and answer the question 1
in Section 2. We present the design principles and answer
the question 2 in Section 3. We describe the implementation
and application and answer the question 3 in Section 4. We
evaluate the performance of WECAN in Section 5. Finally,
we conclude it in Section 6.

2Motivation and problem statement

Much research has been done on how to build SDN
management layer [9–17] but these efforts are mainly
focused on smaller, simply organized networks such as data
center networks and enterprise networks.

In these proposals, SDN usually has three different
functional layers, such as application layer, control layer,
and data layer [18–20]. OpenFlow [21] is a standardized
protocol between control layer and data layer, enabling
SDN to evolve rapidly. However, there is no standardized
protocol between controllers, which makes the development
of SDN in the hybrid and complex network environment is
hampered. Figure 1 provides a common SDN management
architecture that shows the detailed components of the
architecture.

In this architecture, How to use the network is determined
by the application layer.
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Fig. 1 Common SDN architecture has three layers: application layer,
controller layer and data layer

The control layer counts the data packets and calculates
the status of the network. Then, the control layer generates
the forwarding rule and sends it to the data layer. The data
layer processes a single data packet according to the rule.

Over the years, a large number of controllers were devel-
oped for this architecture: Beacon [4], Floodlight [1], NOX
[8], POX [6], Ryu [2], Trema [7], OpenDaylight [3] and
the nearest ONOS [5]. The 3-layer architecture successfully
solves the problem of SDN southbound communication
between the controller layer and the data layer. But it does
not tell us how the northbound protocol between the appli-
cation layer and the controller layer works. In this paper,
the southbound communication refers to the network com-
munication between the SDN controller and the data layer
(forwarding device). The northbound communication refers
to the network communication between the SDN controller
and the network application. The East-west communication
is the network communication between SDN controllers.

The basic assumption of a 3-layer architecture is the
southbound interface between the data layer and the control
layer, and the northbound interface between the application
layer and the control layer is standardized. In fact, the
northbound interface has been changing. Worse, there are
many types of SDN controllers that cause the northbound
interface to be impossible to standardize. Each SDN
controller has its own application interface. While all SDN
controllers share a common basic interface set, when you
dig deeper, you will find more and more different advanced
features. For example, both Pox and Floodlight have an
interface for getting the switch and traffic information, but if
you want to delete a flow entry, it’s easy to do in Floodlight
and it’s hard in Pox. Floodlight’s web interface uses a static
push interface to easily remove the flow entry, but it’s hard
to fix it in Pox. At the same time, different controllers
have different functions. For example, OpenDaylight [3],
Ryu [2] and Floodlight [1] all have an interface for getting
switch and flow information, but a firewall only exists in
OpenDaylight, a load balancer in Ryu and a monitoring
application in Floodlight.

Another issue is the lack of scalability of the three-
layer SDN architecture. An SDN controller has limited
processing power: NOX is capable of processing 30K
requests per second, while Floodlight can handle about
250,000 requests a second. Maestro [22] has the strongest
processing power and can handle about 300,000 requests
per second. In order to achieve a large-scale network
environment and achieve a scalable control layer, many
recent papers explored the architecture of a large-scale or
global-wide SDN controller, including: [13, 14, 23, 24], and
they focus on the necessary components to implement such
an SDN controller. A key limitation of these controllers
is that each SDN controller has its own communication
mechanism that makes it difficult for the SDN network
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to exchange information between different domains. The
domain can be a data center network or an enterprise
network, or it can be an ISP network.

In order to solve these problems, many efforts have
been made to find an effective way to redesign the SDN
architecture. In order to solve the single-controller failure
problem, ElastiCon [25] proposed a dynamic protocol-
based load balancing system using dynamic migration
protocols between controllers. HyperFlow [23] proposes a
logically centralized but physically distributed controller
that updates the state of other physical machines on
the network through the publish/subscribe system. By
connecting switches to the closest part of the controller and
passively synchronizing the OpenFlow controllerś entire
network view, HyperFlow positions the decision to a
separate controller to minimize the control-layer response
time to the data layer. However, if a HyperFlow controller
fails, all the switches connected to the failed controller
must be reconfigured to connect to the new controller.
In DIFANE [15], the ingress switch redirects the packet
to an ”authority” switch that stores all forwarding rules,
while the ingress switch caches traffic flow entries for
future use. The controller is responsible for splitting the
rules to the authority switches. Onix [26] is the first
true logical centralized physical distributed controller that
enables global network views. To improve scalability,
Onix supports creating new instances with new scopes
by aggregating or partitioning. Because the new scope is
limited to devices that are physically close to each other,
Onix is a flat architecture that can handle only one level
of process. In addition, it is not easy to define a sub-
scope for a policy because it is the same application to
resolve the conflict when it happens in the process of
aggregation or partitioning. Onix and HyperFlow reduce the
look-up overhead by enabling communication with local
controllers, while still allowing the application to be written
with a simplified central view of the network. The potential
drawback in the distribution of the entire control layer
is the trade-offs associated with consistency and stability,
which may cause the application to believe that their
accurate view of the network is not properly performed.
For high availability and horizontal expansion, ONOS
[5] uses a distributed architecture and provides a global
network view of the application. Onix and HyperFlow
reduce lookup overhead by enabling communication with
local controllers while still allowing applications to be
written with a simplified network view. The potential
downside is that due to consistency and obsolescence trade-
offs, the application may cause incorrect behavior because
the application does not have an accurate view of the
network when the network state is distributed in the control
layer. FRESCO [27] uses independent modular libraries
and assembles them to provide complex network functions.

Our approach, on the other hand, tries to provide complex
network functions based on existed controllers. Software-
Defined Internet Architecture(SDIA) [11] is dedicated to
breaking down Internet services into well-defined tasks and
how to implement them in a modular fashion. As a network
design principle, 4D project [28], starting in 2004, advocate
a clean slate design. It propose three key principles, namely,
direct control, network-level goals and network-wide view.
It suggest to separate route decision logic from the protocol
governing network element interactions. Meanwhile, it
recommends giving the decision layer a global network
view, serviced by the dissemination and discovery layer,
to control the data layer for forward traffic. FlowBricks
[29] considers the interaction between different controllers
when the network size is small, and does not consider
the interaction of different controllers in a large-scale
network.

In this paper, We propose WECAN, which shares
the 4D’s view that decision, dissemination and discovery
function should be dispersed to multi-layers, can make a
clear separation between application layer and control layer,
which makes network administrator much more smoothly
manage a network. The detailed design can be found in
Section 3. The goal ofWECAN is to resolve communication
problems between different controllers. In fact, our research
has been recognized by industry and academia. The system
is deployed in both CLOUDLAB [30] and CENI [31].
Compared with current controllers (such as floodlight,
ryu and ONOS), WECAN can support multiple types of
controllers, and WECAN is more convenient and easy to
use. For example, it supports to send the flow table rules
through the web interface and also supports the import
and export of topologies. These features are not supported
by other SDN controllers. The significance of WECAN is
that it obscures the differences in network types, sizes and
controllers that network managers have to focus on. We
expect to make the communication platform between SDN
domains easier to use through our work, and we hope this
work can help to standardize the West-East communication
protocol of SDN controller.

3WECAN design

In this section, we present the design of the promising SDN
architecture, WECAN for improving the SDNmanagement.
First, to support complicated networks, WECAN has to
meet requirements for Privacy, scalability, Generality, and
Compatibility. Based on the requirements, we introduce
how to design Northbound API, domain relationship and the
database in Section 2. Then, we describe the four layers in
WECAN architecture and gives a detailed introduction into
the decision layer which is the core component in WECAN.
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3.1 Design requirements of management layer

In this subsection, we want to highlight the importance of
design requirements in a common SDN architecture. We
insist that as long as a large-scale network works well it
should satisfy the following requirements:

High Scalability. Since SDN controller can feasibly
manage a limited number of devices, there’s doubting
that a reasonably large network should deploy more than
one SDN controllers. When it comes a large network,
there may be hundreds of thousands of controllers.
Enough Privacy. Operators may choose to implement
different privacy policies in different SDN domains.
For example, if most users in one SDN domain have
their own privacy policies, the network information (eg,
network topology) in this domain should not be exposed
to external entities.
Great Generality. If SDN replaces the positions of
the traditional network, a standard communication
protocol is needed to deliver a necessary message
between domains, such as accessibility, topology, and
bandwidth.
Good Compatibility. To improve the compatibility
with the traditional network, we should understand
the relationship between traditional domains. Then we
must create a communication protocol or use existing
protocols to control the hybrid network.

3.2 Northbound API, domain relationship, and data
storage

In this subsection, we want to introduce some key points in
WECAN design.

Northbound API There are many successful solutions in
resolving SDN southbound communication problem, but
very few is proposed in resolving the northbound problem
between application layer and controller layer. The main
reason is that we treat the subject without ever clarifying this
issue that the SDN routing problem needs to be decomposed
into intra-domain relationship problem and inter-domain
relationship problem.

To meet the above-mentioned requirements, WECAN
add a new layer, decision layer, a new layer between
the application layer and the controller layer, which
manipulates different controller’s interface and provides
application layer with a standard interface. Decision Layer
is the core component in WECAN, which acts as a standard
communication protocol between application layer and
controller layer. It centralizes all the network intelligence
and network control, such as access control and routing
decisions. In WECAN, the control layer is called the

dissemination layer which function is to collect information
and send it to the decision layer, and distribute the routing
information delivered by the decision layer. The data layer
accepts the routing information sent by the dissemination
layer and forwards the data packets according to the routing.
information.

Domain Relationship The concept of SDN domains was
introduced to support the need for partitioning a network
control layer among different controllers within an admin-
istrative domain. An SDN domain can be defined as the
portion of the network being managed by a particular SDN
controller.

For large-scale networks, only one controller is not suffi-
cient due to the scalability and reliability requirements. For
example, a SDN controller has limited processing power:
NOX [8] handles about 30K requests per second while
Floodlight can handle about 250K requests per second.
In order to implement a scalable control layer in a large-
scale network environment, it is necessary to allow multi-
ple controllers to control multiple domains simultaneously.
Meanwhile, WECAN suggest to decompose Internet service
into well-defined tasks. According to the domain division,
WECANś task is divided into two kinds of inter-domain
tasks and intra-domain tasks.

Network View Network view is an important basis for the
decision of network routing. Many SDN controllers provide
a network view in the control layer. For instance, Onix use
Network Information Base Details(NIB) to store network
view. NIB has a set of network entities which stores the key-
value pairs and identified by a flat 128-bit global identifier
[26]. In the initial SDN architecture, the control layer is
mainly realized by a single controller which can easily get
the network view, so the developers can focus on features
and functionality, as well as performance. However, with the
diversification of network application requirements and the
expansion of network size, it is difficult for one controller to
control the entire network. What followed was a tremendous
challenge to getting the network view.

WECAN partitions network view into two parts, namely
global-wide network view and domain-wide network view.
Domain-wide network view only stores information in
a domain, whereas global-wide network view stores a
domain’s connection with other domains. According to
the division of the network view, WECAN decomposes
Internet service into interior domain tasks and exterior
domain tasks. Interior domain tasks include collecting
network information from a group of controllers with no
interconnection and generating a domain-wide network
view. Exterior domain tasks include collecting network
information from other domains and generating a global-
wide network view.
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Table 1 Ten core tables in WECAN

Table Explanation

w controller info Controller type,such as ONOS,Floodlight

w ip domain ip belongs to domain information

w domain info Domain information

w domain relation Relation between domain

w flow info Flow entry information

w host info Host information

w link info Link connect switch

w port info Port belongs to switch

w port stats Port statistics information

w switch info Switch information

Data Storage TO store network information, WECAN
database have ten core tables. Table 1 gives WECAN
database table names and explanations. Eight of the ten
tables are used to represent information in a network
domain: domain base information, controller, traffic, host,
link, switch, port belongs to switch, and port statistics.
Meanwhile, the other two of the ten tables describe the
domain relationship. The w ip domain table shows which
IP segments are included in a domain. The w domain info
table shows the interrelationships between domains.

3.3 4-Layer SDN architecture

It is easy to understand how WECAN realizes a control
platform if we know the features of each layer in the
platform. In fact, WECAN has four layers which have very
distinct roles (see Fig. 2). Compared to 3-layer platform,
we represent significant principles and major challenges in
designing WECAN.
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Fig. 2 WECAN architecture has four layers, decision layer is a newly
established layer between application and control layer

Application Layer: Customized Demand How a specific
application use a network is determined by the the appli-
cation layer. These applications provide network virtualiza-
tion, network efficiency, advanced routing, network storage,
network computing and other functions. As the operat-
ing system has a graphical user interface (GUI) desktop,
WECAN also provides a GUI that allows users to more
easily understand and operate the network, that is, the appli-
cation layer. However, the current application layer of the
SDN controller generally provides simple network informa-
tion browsing functions, which does not provide flow entry
addition and modification operations, and does not provide
communication between different types of SDN controllers.
To address this issue, WECAN set up a convenient and easy
to use web control interface based on FLEX, which can
control many different types of SDN controllers.

Decision Layer: Control Logic The core component of
WECAN is decision Layer. The decision layer consists
of multiple servers called decision elements that connect
directly to the network. Compared to three-layer SDN archi-
tecture, decision layer in WECAN is a newly established
layer between SDN controllers and applications. Decision
layer makes all decisions driving network control, including
interface configuration , security, load balancing, accessi-
bility and access control. Instead of traditional network’s
management layer, topology decision layer operates in real
time on a network view of the resource limitations, the
capabilities, and the traffic and of the physical devices.
The decision layer uses algorithms to turn network-level
objectives (e.g., reachable matrix, load-balancing goals, and
survivability requirements) directly into the packet-handling
rules (e.g., Routing rules, queuing parameters, forwarding
table entries, packet filters) that must be configured into the
data layer. Decision layer in WECAN has three comple-
mentary modules: Network Information Collection (NIC)
module, Cross-domain Management (CDM) module and
Controller Selection Management(CSM) module. NIC col-
lects network information from a different set of controllers
and generates a domain-wide network view. CDM collects
domain information from other domains to generate a global
network view. Base on the domain-wide network view
and global network view, CSM selects the most efficient
controller for each network flow in the network.

Dissemination and Discovery Layer: Cache Server Dissemi-
nation Layer in WECAN acts as an intermediary between
potential hundreds of switches and remote application
servers by congregating requests from switches into various
servers. In the process, a SDN controller frequently requests
resources to avoid contacting the server repeatedly for the
resource and the route information (flow table) has not
changed. The dissemination layer provides an efficient and
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robust communication substrate that connects forwarding
devices with decision layer. Although control information
may traverse the same set of physical links as the data pack-
ets, the dissemination paths are maintained separately from
the data paths. Only in this way can the control information
be traversed without the need to configure or successfully
establish a path in the data layer. In contrast, control infor-
mation is transmitted over data paths in traditional networks,
requiring the establishment of transmission routes prior to
transmission of control information. In WECAN, the dis-
semination layer does not create control information itself,
so it only need to moves the control information created by
the decision layer to the data layer and sends the network
state information identified by the discovery layer to the
decision layer.

Data Layer: Forwarding Data The data layer is the carrier
of SDN network, includes network switches, and any
other network elements that support an interface allowing
Dissemination Layer to read and write the state controlling
the element’s behavior (such as forwarding table entries).
The function of the data layer is mainly confined to packet
forwarding and simple processing. However, it is necessary
to build a flexible and easily configured SDN data layer in
order to adapt changing demands placed on the application
by the end users, the new personalized requirements of data
center network and other network application scenarios.

4 Implementation and application

To prove the solution, we design and implement a prototype
system that use Floodlight and Maestro as SDN controllers.

4.1WECAN implementation

The core component in WECAN is decision layer which has
three sub-modules: Network Information Collection (NIC)

module, Cross-domain Management (CDM) module and
Controller Selection Management(CSM) module.

Network Information Collection (NIC) Network Information
Collection is responsible for managing different controllers,
such as Floodlight and Maestro. NIC gathers information
from these controller’s API and other event source systems,
such as network monitoring system. NIC only considers
the flow entries export policies in a domain, while
policies between domains are resolved by Cross-domain
Management (CDM).

The NIC has four components, including data storage,
dissemination and discovery, routing decisions, and network
display (see Fig. 3). The network display are responsible
for displaying and managing inbound, traffic and topology
information through front-end tools, which may be Web
sites or software clients. In our prototype, the network dis-
play is a Web site and is written in flex language. The pur-
pose of routing decisions is to generate new network confi-
gurations and new forwarding rules based on changes in net-
work topology and statistics. Dissemination and discovery
send network topology and statistics to routing decisions
and distribute new forwarding rules to forwarding devices.

Domain Relationships Management For a large-scale net-
work, it is generally known that different domains should
exchange information. Before design a large-scale SDN
network, it is very important to define inter-domain rela-
tionships. The knowledge of inter-domain relationships has
many applications and usage in routing decision. First, it is
crucial in network service management decision including
the optimal placement of controllers and switches. Second,
it can help domain administrators to achieve load balanc-
ing, congestion avoidance and fault tolerance. Third, it can
aid domain administrators in planning for future contrac-
tual agreements. Fourth, it can help domain administrators
to reduce the effect of the misconfiguration and to debug
switch configurations.

Fig. 3 There are four
components in NIC, such as data
storage, dissemination and
discovery, routing decision and
network display
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Fig. 4 Route paths (D1,D2,D3) and (D1,D2,D6,D3) are valley-free
while Route paths (D1,D4,D3) and (D1,D4,D5,D3) are not valley-free

To address this problem, we propose a controller graph
representation that classifies domain relationships between
children-to-parent (c2p), friend-to-friend (f2f), and sibling-
to-sibling (s2s).

In the c2p category, a children pays a parent for any traffic
sent between themselves. In the f2f category, two domains
freely exchange traffic between themselves and their chil-
dren, but do not exchange traffic from or to their parents
or other friends. In the s2s category, two domains adminis-
tratively belong to the same organization and exchange
traffic between their parents, children, friends, or other
siblings. Figure 4 gives a example of domain relationships.
Our solution is rather standard, borrowing heavily from long
standing Autonomous System (AS) deployment practices.

Table 2 shows common relationships between domains
and the export policies associated with them. Parents
provide transit to children; friends exchange only traffic
that is sourced and sinked by them, their children or their
siblings; and siblings provide mutual transit.

Controller Selection Management In a distributed SDN
system, there may be multiple controllers handling traffic
at the same time. So how to choose the right controller to
improve system processing efficiency?

Here we describe the four-step improvement of the
controller selection algorithm.

Step 1 Random Selection: Random selection means that
when a batch of requests arrives, the coordinator
randomly selects a controller for a request. When
the system has some switches and few controllers,

Table 2 WECAN export policy

Route export Export policy

Children to parent Only routes received

from children and sibling

Friend to friend Only routes received

from children and sibling

Parent to children All routes

Sibling to sibling All routes

random selection is sometimes more efficient.
When a random selection is made, the cost of
acquiring controller load information is zero, so the
controller selection cost is also lower.

Step 2 power of two choice: Random selection is very
effective when the network is small but decreases
when the network becomes large or the controller
load is unbalanced. For example, when the network
has two controllers A and B, the random selection
algorithm chooses a full-load A controller to handle
a request. Since the idle B controller is not used,
the average controller efficiency decreases at this
time. To prevent this from happening, we use the
power of two choice algorithm [32] to solve this
problem. Under the power of two choice algorithm
algorithm, the coordinator first selects two or more
controllers for a request and then distributes the
requests to the controller with the lowest load.

Step 3 Batch-Sampling:In the power of two choice algo-
rithm, because each task need to get the selected
two controller load information, which undoubt-
edly increase the cost of the controller selection.
So how to reduce this cost? Here we use the batch
sampling method. When a batch of m tasks arrive,
the system no longer handles m tasks at once. But
gets the load information of 2m controllers and
selects m controllers from the 2m controllers to
process the m tasks. We call this algorithm batch-
filling. The batch-filling algorithm helps to reduce
the overhead of getting the controller load.

When using the power of two choice algorithm,
since each task needs to get the load information
of the two or more controllers, this undoubtedly in-
creases the cost of controller selection. So how to
reduce this cost? Here we use the batch-filling algo-
rithm which helps reduce the overhead of getting
the controller load. When a batch of m requests ar-
rives, the coordinator does not process the requests
one by one but instead gets the load information
from 2m controllers and selects the m controller
from the 2m controller to handle the m requests.

When using the power of two choice algorithm,
the cost of controller selection increases undoubt-
edly as each task needs to obtain load information
for two or more controllers. So how to reduce this
cost? Here we use the bulk sampling method.When
a batch of m requests arrives, the coordinator does
not process the requests one by one, but instead
takes the load information from the 2m controller
and selects the m controller from the 2m controller
to handle the m request. The bulk-filling algorithm
helps reduce the overhead of getting the controller
load.
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Step 4 Batch-Filling: The batch-sampling algorithm first
probes the load of 2m controllers and then selectsm

lower-load controllers to handle m tasks, meaning
that each controller handles a task. But sometimes
this algorithm is inefficient, for example,m control-
lers have two controllers A and B, A load of 10%,
B load of 90%. Here we assume that handling each
task will increase the controller by 10% of the load.
Obviously, if the task assigned to the B controller
is transferred to the A controller, the efficiency will
be higher. This is like pouring water into the cups
of m different water levels. First, water is required
to be injected into the cup with the lowest water
level until the water level of the cup is aligned with
the penultimate cup of the water level. And then
continue with this process. We call this algorithm
batch-filling. The batch-filling algorithm can in-
crease the load balancing of the system and be more
efficient.

4.2 Applications

In this section, we discuss some application being
built on top of WECAN. We make a prototype based
on WECAN and successfully integrate two different
controllers: Floodlight [1] and Maestro.

Use Case1: Access Control In order to ensure network
security, network devices need to filter traffic in the
network, which requires the use of Access Control (ACL).
Software defined networks (SDNs) make it easier to
build access control lists (ACLs) than traditional networks.
However, how to build an effective and efficient ACL
application in SDNs needs a lot of work. So far, there
has been some research on the use of ACLs in SDNs,
but most of the existing work uses passive methods to
implement ACLs so that new ACL updates can not be
done immediately. Based on WECAN we propose CLACK,
a user-driven centralized ACL method. In CLACK, users
can take the initiative to implement ACL, that is, users
can directly add ACL list to the network through the
front-end of WECAN. The new rules added by these
users are automatically updated to the network through
Dissemination and Discovery Layer in real time. CLACK
can avoid additional delay, save controller’s resource, and
also ensure network security.

Use Case2: Setup Forwarding Rules To simplify the process
of setting forwarding rules, we create a web form with
authentication in the front-end of WECAN. The routing
decision translates user-entered rules into OpenFlow flow
entries and sets the forwarding rules.

Use Case3: Network Topology Backup and Recovery Net-
work diagnostics is very important for reproducing and

diagnosing networks when something goes wrong. But how
to back up the network topology and reproduce the network
operation has been a big problem. In WECAN, we back up
the network topology and network health into scripts and
restore the network topology in a test environment. By back-
ing up and restoring the network operating environment,
WECAN offers great convenience for network diagnostics.

5 Evaluation

In this section, we evaluate WECAN in two ways: with a
test application, designed to test a singleWECAN instance’s
performance, and with cbench, used to verify WECAN’s
performance as a general platform. We test two key aspects
of a single WECAN instance: request completion time and
memory usage, and two key scalability-related aspects of
WECAN: throughput and latency.

5.1 Performancemetrics

A number of metrics must be determined carefully to
accurately reflect the system performance. Thus, there are
a number of performance metrics that evaluate our system
performance, term as, response time, bandwidth, throughput
and initializing time.

Response Time: The average of response time is
computed to evaluate the overall system performance as
follows. The response time is related to the speed at
which the controller handles network traffic.
Throughput: The throughput as regarded has two
aspects that the one is the throughput of WECAN and
the other is the throughput of the network. Here is
the WECAN throughput, which reflects the processing
capacity of the WECAN, which also contains two
aspects. The one is the throughput of the traffic processed
by the WECAN, the other is the supporting throughput of
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certain time(ms)
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Fig. 6 Request completion time compare between WECAN and
Floodlight

the JSON RPC provided by the WECAN. And network
throughput reflects the performance of the network.
Memory: Memory reflects the resources WECAN
occupied, when the memory usage is low, means that in
the same time WECAN can process more user requests.
Initializing time: Initializing time reflects the coordi-
nator initializing time and the consumption time of link
controller.

5.2 Demonstrating the advantages of WECAN

Each WECAN instance has to connect the controllers
it manages. To stress this interface, we connected three
controllers to a single WECAN instance and ran apache
benchmark to test WECAN’s performance as a single
instance. To measure this throughput, we ran an apache
benchmark which repeatedly acquired exclusive access to
the WECAN.

Figure 5 shows that thread modification percentage of
the requests complete in a certain time. When there is only
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Fig. 7 Memory usage to add 1 million flow entries

Table 3 PC disposition

Product Name ThinkPad T440

CPU Intel(R) Core(TM) i5-4200U

Standard Memory DDR3L-1600 8 GB

Operating System Windows 7 Professional

one thread, WECAN finishes 95% of the requests in 5 ms.
When the threads increases, WECAN uses much less time
to complete a request. As you can see from Fig. 6, it wastes
no more than 3 ms to complete 95% of the requests.

Because decision layer inWECAN is a newly established
layer between applications and controllers, it is necessary
to compare the request time before and after decision layer
established. To test the request time, we write an application
which sends 100000 flow table entry update requests and
monitors the time used in processing the requests. Figure 6
shows that request completion time between WECAN and
Floodlight is less than 5%. WECAN requestś completion
time includes Floodlight completion time, so the former
spend longer time than the latter. More than 60% of the
requests in WECAN is finished in 5 ms, and more than 95%
of the requests finished in 10 ms, so does Floodlight. The
result of this is identical to that of we do in the previous
test. In the worst case, a flow table entry updates requests in
WECAN can be finished in 100 ms.

Figure 7 describes the memory usage status of WECAN
when adding flow entries. It shows that WECAN needs at
most 60MB memory to add 1 million flow entries.

5.3 Experimental setup

To test the WECAN processing performance in a real
network environment, we built a partial 4-radix FatTree.
A PICA8 3297 switch is divided into seven switches.
Each domain has an IP Range or an IP Range set. In our
test, we construct two domain: Domain A and Domain B.
Domain A’s IP Range is 192.168.0.1/24, and Domain B’s
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Fig. 8 The throughput of each controller connected 16 switches
changes with the number of thread
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Fig. 9 Response time varying the number of switches for runs with 1
threads

IP Range is 192.168.1.1/24. We do this test on two PCs
with same disposition: one host in Domain A and another
host in domain B. Table 3 summarizes the parameters of
the PC. Figure 8 describes the throughput of each controller
connected 16 switches changes with the number of thread.
Floodlight and Maestro can process 700 kilo requests per
second at most. WECAN can process 900-kilo requests
per second. Floodlight and Maestro do routing based on
network-wide view while WECAN does routing based on
simplified network wide view.

Figure 9 describes response time (milliseconds) varying
the number of switches for runs with 1 threads. At
the beginning, adding more CPU beyond the number of
switches improve a little latency, however serving a far
larger number of switches than available CPU results in a
noticeable increase in the response time.

6 Conclusions

This paper presents the first effort that uses SDN four-
layer platform to solve multi-SDN controller problems.
The proposed solution, WECAN, might provoke interesting
discussions on the research community and open the door to
a range of innovation opportunities. In a word, we expect to
see a new generation of SDN that is versatile, flexible, and
easy to manage.

This paper makes the following contributions:

1. We propose a new layer between application and
controller and design a distributed control framework,
which makes heterogeneous controllers work together.

2. We have designed an initial WECAN architecture,
which is capable of making kinds of controllers
constitute a large control layer.

3. We proposed a state-of-art controller selection algo-
rithm, to select the fastest and reliable controllers to
handle traffic from the switches.

4. To verify WECAN, we design and implement a
prototype system. In our prototype, there are two
different SDN controllers: Floodlight and Maestro. Our
experimental evaluation clearly indicates WECAN has
higher performance than Floodlight and Maestro.
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